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This paper presents a two-dimensionalmodel for the analysis of freely vibrating laminated
plates. The governing di!erential equations, associated boundary conditions and
constitutive equations are derived from Reissner's mixed variational theorem. Both the
governing di!erential equations and the related boundary conditions are presented in terms
of resultant stresses and displacements. The model is able to provide the results for the
corresponding three-dimensional theory. Such a performance is guaranteed from an
appropriate expansion of relevant kinetic and stress quantities through the thickness of the
multilayered plate. The expansion is realized by using a novel selection of global
piecewise-smooth functions (GPSFs). The number of GPSFs can be arbitrarily increased to
achieve a two-dimensional plate theory which is, at least, as accurate as that of a full
layerwise theory. It is also shown that GPSFs permit to deal a multilayered plate as if it was
virtually made of a single layer. Indeed, the theory need not explicitly introduce continuity
conditions for both displacements and relevant stresses. The performance of the present
two-dimensional model in conjunction with the global piecewise-smooth functions is tested
and discussed by comparing its resulting eigen-parameters, for a class of simply supported
plates, with those of other two-dimensional models and with those existing of the exact
three-dimensional theory.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The theories describing the dynamic behaviour of a laminated plate during its free
vibrations can be divided into four main categories which, in the order of complexity
involved in the models, can be de"ned as the (i) classical plates theory (CPT), (ii) "rst order
shear deformable theory (FSDT), (iii) higher order shear deformable theories (HSDT) and
(iv) three-dimensional theories (3-D). The acronyms used for the two-dimensional theories
are used in this paper for those models which describe in a global sense (through the whole
thickness of the laminate) the related assumptions in the frame of the method of the
hypotheses. In this respect, references [1}3] can be considered as the leading FSDT models
for static and dynamic studies while references [4, 5] are monographs dedicated to the
applications of both CPT and FSDT. As far as HSDT models are concerned, references
[6}12] are of particular relevance.
With respect to the three-dimensional model, which has rarely been solved in exact form

in engineering vibration problems, all the previous two-dimensional models have inherent
limitations although they constitute a useful engineering alternative in several practical
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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applications. Recent developments have, however, also indicated that two-dimensional
models need to be further re"ned. In particular, for "bre-reinforced laminates the thickness
of the laminated plates together with the variety of the materials employed have
a remarkable in#uence on the related dynamical behaviour of composite multilayered
plates. In this regard, therefore, more sophisticated two-dimensional theories are expected
to give more reliable results.
The main drawbacks of the aforementioned theories (CPT, FSDT, HSDT) are the

possible violations concerning the continuity of interlaminar transversal stresses. In this
respect, several models exist to account for the continuity requirements at the interfaces of
di!erent layers (see, for example, references [13}19]). Such models deal with a distribution
of the displacement components and related transversal stresses that come mainly from an
extrapolation of CPTs, FSDTs, and PSDPTs to a layer-by-layer level. However, as it has
been veri"ed [20}22], such continuity requirements should possibly be integrated with
suitable shape functions that might better model displacement and stress quantities besides
possibly increasing the number of degrees of freedom [23}25]. In particular, Nosier et al.
[24] showed how a generalized layerwise theory (LWPT) [23] was able to evaluate
frequencies which agreed quite well with those of the three-dimensional theory of elasticity.
However, such a layerwise theory was developed without an a priori ful"lment of the
transverse stress continuity. The continuity requirements were related to the generalized
displacement components that were assumed to be linear throughout the layers considered.
As far as the laminated plate theory introduced by Soldatos [25] is concerned, it is, similar
to reference [23], a displacement-based theory. In such a generalized theory, the continuity
requirements, concerning the transverse shear stresses, were consistently imposed by
Hamilton's principle in conjunction with Lagrange multipliers. Unfortunately, Soldatos
[25] deals with theoretical work that has not yet been supported by numerical comparisons.
In order to avoid the shortcomings of displacement-based theories (after assuming

a displacement "eld the constitutive equations naturally lead to discontinuous transverse
stresses) the present work was directed towards a mixed-variational approach, where
a plausible assumption is made for both displacement and stresses.
This work deals with a two-dimensional theory tailored for dynamical studies of freely

vibrating laminated plates. The theory is mainly based upon Reissner's works [26, 27].
However, it is stressed that this work does not constitute the "rst attempt to build a two-
dimensional model based on this choice. Indeed, Murakami [28] and Toledano and
Murakami [29] were the "rst to develop an analytical model for studying laminated
composite plates in the frame of static studies of laminated plates. In both papers a linear
assumption of the in-plane displacement components was made through the layers of the
laminate and the shear transverse stresses were modelled by using a quadratic variation.
More recently, Carrera [30}32] extended the application of Reissner's variational theorem
to corresponding dynamic studies of vibrations of multilayered plates and shells as well as
accounting for the e!ects of the normal stresses.
As far as the interests of this work are concerned, reference [32] deserves particular

attention. Carrera [32] compares several two-dimensional models from which a layerwise
model (LW4) is found to be the most accurate model to describe the dynamic behaviour of
laminated plates. Such a layerwise model was introduced by using Legendre polynomials to
describe displacements and stresses through the thickness of each layer of the laminate. In
addition to this, after getting the equilibrium and compatibility equations with the related
boundary conditions for each layer, a further step explicitly imposed the continuity
requirements to derive the governing equations and boundary conditions for the whole
laminate. The theory resulted in a layerwise model having an increasing complexity
depending on the number of layers.
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In addition to the previous studies, based on Reissner's works [26, 27], Messina [22]
investigated the possibility to arbitrarily expand the number of degrees of freedom in
a global sense through the thickness of the laminate by using certain orthogonal
polynomials that properly satis"ed the relevant boundary conditions. This procedure
provided an expansion, which is independent of the number of layers and the theory did not
require an additional a posteriori mathematical treatment to explicitly impose the
interlaminar continuity requirements and the external boundary conditions. The models
presented in reference [22] were, however, characterized by the following limitations: (i) the
approximating functions for transverse shear stress and in-plane displacements were
continuous with its "rst derivatives; (ii) normal e!ects were neglected (=(x, y, z; t)"
w(x, y; t); �

�
"0).

Based on the encouraging results that were obtained for the mixed model (M2D) in
reference [22], in the present work both assumptions (i, ii) are removed completely thereby
retaining the advantages presented in reference [22]. Namely, the present model constitutes
an extension to take into account an arbitrarily high number of degrees of freedom with
an attempt to account for the relevant three-dimensional behaviours by using a
two-dimensional model. It is believed that this objective can be obtained by ful"lling
all the requirements of the exact theory (satisfying all continuity requirements in a strict
sense rather than in a weak form [22] and satisfying the related boundary conditions).
For this reason, the classical expansion in series has been generalized from continuously
smooth functional bases to bases characterized by global piecewise-smooth functions
(GPSFs).
It is hereafter shown that such functions make the development of a mixed-based

laminated plate theory that avoids the explicit introduction of continuity requirements for
both stress and displacement components possible. The continuity requirements are
inherently obtained by superimposing GPSFs.
Such GPSFs are obtained from a novel, although not unique selection, in a set of

dependent functions symbolically belonging to a graph. The graph is made by an
arrangement of delayed, scaled and turned over known continuous smooth functions,
that satisfy relevant requested boundary conditions in the problem being dealt with.
Relevant questions of non-uniqueness and independence are discussed, proved and
numerically tested in the frame of a best approximation in the mean to a prescribed function
[33].
Finally, as far as the mathematical two-dimensional model is concerned, once the

governing di!erential equations of motion and the related boundary conditions are
consistently obtained for general material arrangements (angle and cross-ply lay-ups,
symmetrically stacked or not), they are presented as depending on displacements and
generalized stresses. The performances of such a two-dimensional model in conjunction
with the GPSFs have been tested by comparing the eigenfrequencies of the present model to
those frequencies of certain simply supported plates; that is, the exact three-dimensional
eigenfrequencies which are known [24]. Further comparisons with respect to existing
two-dimensional layerwise theories [24, 32] also provide support for the excellent
behaviour of the present model.

2. THE GENERALIZED TWO-DIMENSIONAL MIXED-BASED PLATE MODEL (M3D)

Consider a rectangular plate having a constant thickness h, an axial length ¸
�
, and

a transversal length ¸
�
, (Figure 1). The in-plane and normal co-ordinate length parameters

are denoted with x, y and z, respectively, where ;, < and= represent the corresponding



Figure 1. Nomenclature and co-ordinate system of the laminated plate.
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displacement components. The plate is made of an arbitrary number,N
�
, of linearly elastic

monoclinic layers (Figure 1).
The present general laminated plate theory begins with the following displacement and

stress expansions:
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��
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�
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where in each single equation, (1, 2), the indices ( j, p"1,2, N
�
, N�) are assumed to be

repeated in place of the relevant summation. This convention is later considered unless
di!erently speci"ed. Moreover, without loss of generality, the approximating functions
(�(z)

��
, � (z)

��
, �(z)

��
, � (z)

�
, � (z)

�
, � (z)

�
) expressed through the z-co-ordinate are considered

dimensionless and the functions de"ned in the middle plane (�
��
, in Figure 1) have the

corresponding dimensions of displacement and stress.
If such functions [�(z)

��
, �(z)

��
, �(z)

��
, � (z)

�
, � (z)

�
, � (z)

�
] de"ned through the

z-co-ordinate are considered to be known, equations (1, 2) should permit the development
of the present theory using degrees of freedom that are de"ned in the middle plane of the
plate. Such functions are thought as globally de"ned through the whole thickness of the
laminate, i.e.,!�

�
)z/h"�)�

�
, rather than at each layer level. Moreover, they are chosen

in order to satisfy the boundary conditions on the top and bottom of the plate. In particular,
as far as the transverse stress components (�

��
, �

��
, �

�
) are concerned, the relevant

approximating functions (�(z)
�
, � (z)

�
, �(z)

�
) should assume zero values at the bottom and

top of the laminate. This choice will dictate at any expansion level (N "xed) the
zero-traction boundary conditions on the lateral surfaces of the laminated plate. The case
for the displacement components is di!erent; the expanding functions (� (z)

��
, �(z)

��
,�(z)

��
)

should not introduce any constraint on the displacement "eld and, therefore, a complete
unconstrained base should be used. Both mathematical aspects will be discussed further in
section 3.
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Based on the assumed displacement "eld the kinetic equations can be obtained through
the three-dimensional elasticity as follows [( )�"(d/dz)( ); ( ),

�
"	 ( )/	x; to carry out layer by

layer]:
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In accordance with the adopted mixed-based approach [22, 27, 30}32], generalized
Hooke's law, referred to the kth layer, can be considered in the following form:
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from which, based on the circumstances of the adopted approach [22, 27, 30}32],
equation (4) can be re-arranged as follows:
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The mixed variational equations [22, 27, 30}32] can be then considered for the dynamic
case of freely vibrating systems in the following equation:
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where the superscript T stands for the transpose operator. The superscripts in parentheses
(G, C) are stating that the relevant out of plane strains (e

��
) should be introduced, into

equation (6), by using the geometric equations (3) and the constitutive equations (5)
respectively. Conversely, the in-plane strains are always related to the displacement by
equations (3). Finally, in-plane (�

	

) and out-of-plane stresses (�

��
) should be assessed by

using the constitutive equations (5) and the assumed "eld equations (2) respectively.
Therefore, applying equation (6) according to equations (1}5), carrying out the relevant

integrations by parts, not reported here for brevity's sake, and "nally with a view of
considering the z-integrations through the whole thickness of the laminate, the governing
di!erential equations are obtained together with the relevant boundary conditions:
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and the consistent constitutive equations:
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where the quantities presented in equations (7, 8) corresponds to the following relations:
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with  being the volumetric density of the material. Finally, the matrices reported in
equation (9) have the following form:
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where each submatrix in (A, B�, B�, B�) is constituted by the following components:
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respectively.
The governing equations (7}9) should "nally be completed by the remaining constitutive

equations that correlate the resultant stress corresponding to �
	

to the strains by the

constitutive equations (5). However, before completing the full set of two-dimensional
equations that govern the dynamics of the plate, an attempt to present such a set of
equations in another form may be more convenient.
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In particular, after inverting matrix A in equation (9), the transverse stress could be posed
in terms of the displacement components by using the same equation (9) once it is
pre-multiplied by matrix G:
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By inserting equation (19) into relevant equations (10), it is possible to rewrite the governing
di!erential equations of motion (7), and the related boundary conditions (8) as given in
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illustrated in equations (7, 8, 10). These latter quantities can be then expressed by combining
equations (19, 10) in terms of the displacement and displacement gradients to obtain part of
the generalized constitutive equations. The remaining constitutive equations can be
obtained by correlating the resultant stresses, corresponding to �

	

, to the strains by

equations (5, 19) and the relevant resultant stresses of equation (10). Therefore, the algebraic
manipulations mentioned result in the following matrix equation (22) that represents the
generalized constitutive equations:
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The elements of the coe$cients in matrices C�
	�
, are given in Appendix A. The vector on the

right-hand side is based on relations (13) and the vector on the left-hand side is an
assembled vector of ordered corresponding resultant stresses (10). Finally, it should be
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noted that in the previous statements N
�
and N� have been considered to be di!erent but

later any consideration of N
�
and N� will be referred to as N"N

�
"N� .

3. THE GLOBAL PIECEWISE-SMOOTH FUNCTIONS (GPSFs)

In section 2 a theory has been developed without mentioning the approximating
functions that, once introduced a posteriori into the model, can properly con"gure the
displacement and transverse stress components through the whole thickness of the
laminate.
Messina [22] used a similar approach in conjunction with a certain family of orthogonal

functions. In part the bases used in reference [22] have been extensively used in vibrational
studies of rectangular plates (see, for example, references [21, 34}38]). However, such
orthogonal functions satis"ed the continuity requirements at the interfaces in a weak form.
Indeed, the orthogonal functions used in reference [22] were continuous with continuous
derivatives and thus any relevant linear combination still preserved such a smoothness. In
this paper, besides the introduction of the normal e!ects in both displacement and stress
(section 2), particular functions are introduced in order to overcome the de"ciency of
smoothness. In both stresses and displacements, the approximating functions should not be
continuously smooth but should contain discontinuities similar to those present in the
functions that have to be approximated.
In this respect, the idea that leads to the introduction of these functions is 3-fold: (i) it

should be accepted that the approximation of a discontinuous function by using
discontinuous functions is probably an easier task than using continuous functions; (ii) if
a singularity is considered as an additional degree of freedom in the approximating
functions, rather than undesired, then a base made up of discontinuous functions should
also be able to approximate naturally continuous functions by simply eliminating the
contribution of that degree of freedom (singularity) in the approximating process; (iii)
a global linear combination of approximating functions in a whole domain is simpler than
a local linear combination domain by domain (layer by layer in a plate) because the latter
would require additional continuity conditions at the boundaries. For all these points,
a base made up of global discontinuous functions, whenever available, should be considered
more general than a base constituted of continuously smooth functions such as, for
example, Legendre polynomials, Fourier series, etc. These latter bases (as is well known)
have inherent di$culties to model discontinuities [39].
In the problem, which being dealt with, the functions one would like to approximate

(displacements and transversal stresses through the thickness of the laminate) are
C�-continuous [12, 19]. Therefore, the development of suitable approximating functions
(in the latter termed as global piecewise-smooth functions or GPSFs) should be modelled in
this respect. Those functions that will be used a posteriori in the theory of section 2 are
introduced here independently from their particular application in the present theory
because it is believed they might be conveniently used in several contexts. In particular, the
mathematical performance of such approximating functions is independently discussed in
the following frame of the best approximation in the mean to a C�-continuous prescribed
function ( f (z)).

3.1. GPSFs: INDEPENDENCE, UNIQUENESS AND NUMERICAL TESTS

In this section, the possibility to approximate a generic C�-continuous f (z) (see, for
example, Figure 2) in the mean by using GPSFs is investigated. Without losing any
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generality the global domain is assumed to be dimensionless in [!1/2, 1/2] with its related
independent variable �.
In such a context, it is noted here that the best approximation in the mean to a prescribed

f (�) with respect to linear combinations of known approximating functions ( f (�)
�
, f (�)

�
,2,

f (�)
�
) is

f (�)
�
"c

�
f (�)

�
#c

�
f (�)

�
#2#c

�
f (�)

�
, where � 3[!1/2, 1/2] (23)

and it consists of determining the coe$cients of the linear combination (c
�
, c

�
,2, c

�
) so

that the following integral

�
���

	���

( f (�)!c
�
f (�)

�
!c

�
f (�)

�
!2!c

�
f (�)

�
)� d� (24)

assumes its minimum value. The function f (�)
�
constitutes the approximation of f (�), and it

can be evaluated once a set of N linearly independent approximating functions ( f (�)
�
,

f (�)
�
,2, f (�)

�
) has been chosen. The evaluation can be carried out by equating to zero the

"rst partial derivatives of equation (24) with respect to the coe$cients (c
�
, c

�
,2, c

�
). Thus,

the approximating process results in solving a system of linear algebraic equations [33].
The linear algebraic system certainly admits a solution since the assumed linear
independence of the approximating functions makes the related Gram's determinant [33]
non-singular. This problem can be simpli"ed if the approximating functions involved are
orthogonal; however, this condition has not been considered here because the
approximating functions, considered in the following context, are not globally orthogonal
(although such approximating functions will be obtained by joining functions which are
originally orthogonal).
In order to rationally obtain a class of GPSFs a particular process of the best

approximation in the mean of an hypothetical function f (�) is considered. For example, the
function is constrained in ful"lling the following boundary conditions:

f (!1/2)"f (1/2)"0, (25)

besides being C�-continuous with its derivatives that are discontinuous on the boundary of
each single sub-domain (Figure 2). In particular, consider for simplicity that f (�) is
characterized by two internal points in [!1/2, 1/2] where the derivatives are discontinuous
or, equivalently, by three sub-domains that, contained in [!1/2, 1/2], localize the smooth
parts of f (�).
On the basis of these assumptions it comes quite natural to approximate f (�) in the mean

in each single sub-domain by using local functional bases such as that reported in
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Figure 3(a). In more details, Figure 3(a) shows in each single column (or sub-domain)
a complete base up to the "rst three functional components (row by row). The extreme
functions in any row ful"l the related boundary conditions (25) at the boundaries
(�

�
"!1/2 and �

�
"1/2) while the base in the middle is not constrained to ful"l any

condition apart from the continuity at the internal boundaries (�
�
, �

�
). The bases of

Figure 3(a) correspond to the functions used in reference [21] and are indicated here in
analogy to a consolidated nomenclature that recalls essential beam-type boundary
conditions (SF, FF, FS) in the "rst, second and third sub-domains respectively. The
following expressions (26) give an explicit expression for the "rst three local functional
components in a dimensionless domain [0, 1]:

SF-base FF-base

�3� 1

4�5 (��!(3/4) �) �3(2�!1)

�7(15��!20��#6�) �5(6��!6�#1). (26)

Equations (26) can be adapted in the relevant sub-domains of Figure 3(a) by simply
carrying out a change of variables. Namely, the functional components in the "rst and third
sub-domains of Figure 3(a) (termed SF- and FS-base respectively), were obtained by
substituting � into SF-base of equation (26) with (�!�

�
)/(�

�
!�

�
) and (�

�
!�)/(�

�
!�

�
)

respectively. The functional components in the second domain of Figure 3(a) were obtained
by substituting � into FF-base with the quantity (�!�

�
)/(�

�
!�

�
). Evidently, whenever

related boundary conditions such as equations (26) are not required, the FF-bases should be
used in the place of SF- and FS-base.
Even though these local approximating functions (SF, FF, FS) are able to approximate in

the mean to f (�) whilst simultaneously ful"lling the boundary conditions (25) (for the
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presence of SF- and FS-base), they would also require the explicit introduction of the
related continuity conditions at the internal boundaries. Such an explicit introduction
might be further complicated whenever the approximation in the mean is not the only
problem one is dealing with (as is the case in the present laminated plate theory).
In order to avoid such an explicit introduction of the continuity conditions at the internal

boundaries, a question could be raised: whether a global linear combination of
C�-continuous functions is able to realize an approximation in the mean as much as it could
be done locally by the standard functional bases (Figure 3(a)). In addition, it might be
interesting to investigate if such global C�-continuous approximating functions can be
simply obtained from an a priori junction of the previous local functions leading Figure 3(a)
to transform into Figure 3(b). That is, Figure 3(b) should be considered to be obtained
directly from Figure 3(a) by scaling each single function in its related sub-domain by
a coe$cient that makes the three global functions reported in Figure 3(b) ( f (�)

�
, f (�)

�
,

f (�)
�
) globally continuous. The following equation (27) clari"es the concept with respect, for

example, to the "rst global function of Figure 3(b):

f (�)
�
"�

f (�)
��
, � 3(�

�
, �

�
),

f (�)
���

"

f (�
�
)
��

f (�
�
)
��

f (�)
��

"C
�����

f (�)
��
, � 3(�

�
, �

�
),

f (�)
���

"

f (�
�
)
��

f (�
�
)
��

f (�
�
)
��

f (�
�
)
��

f (�)
��

"C
�����

)C
�����

) f (�)
��
, � 3(�

�
, �

�
). (27)

The simple arrangement in equation (27) constitutes a global piecewise-smooth function
(GPSF: f (�)

�
). The remaining two GPSFs represented in Figure 3(b), ( f (�)

�
, f (�)

�
) can be

similarly obtained by recursively scaling� the local smooth functions in Figure 3(a) as has
been shown in equation (27).
The arrangement reported in Figure 3(b) can also be synthesized by the graph in Figure 4

where each single GPSF is represented by a path and each path is made up of nodes and
branches. Each node represents a local approximating function and each branch represents
a junction characterized by a scaling coe$cient (C

	�� �
). The coe$cients represent a priori

continuity conditions that realize each single GPSF by equation (27). Once it is clear what
a graph represents then its nomenclature can be further simpli"ed, thus eliminating the
relevant coe$cients in all paths.
�Such a recursive scaling process is intended to be carried out always from left (�
�
) to right (�

��
).



Figure 5. Representation of all extractable paths (GPSFs) from a graph.
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After introducing a GPSF, it should be stressed that Figure 4 does not report a complete
base of GPSFs. The sense of this statement is related to the evident inability of the three
GPSFs of Figure 4 to be e!ective in an approximation in the mean to a f (�) as much as
a local approximation (Figure 3(a)) would be able to do domain by domain. Such an
inherent inability of the GPSFs reported in Figure 3(b) (or Figure 4) can be explained in
di!erent ways. The simplest way is based on an exercise. For example, if f (�) corresponds to
the following expression:

f (�)"�
0, � 3(!1/2, !1/6),

��!1/36, � 3(!1/6, #1/6),

0, � 3(#1/6, #1/2),

(28)

it should be evident that a local approximation in the mean by equations (23, 24) to f (�)
(adapted in the relevant local domains) can be carried out exactly by using the functional
components (26) arranged as reported in Figure 3(a). The situation would not be the same
whenever the approximation in the mean by equations (23, 24) to f (�) is globally carried out
by the functional components reported in Figure 3(b) (GPSFs). In this case, it would result
in a poor approximation of f (�) (28). Such a situation is not acceptable because from
a suitable set of GPSFs constituted by polynomial components of Figure 3(a), an exact
representation in the mean to a piecewise-smooth polynomial f (�), having its maximum
degree with a parabola (28), should be expected.
The incompleteness of the GPSFs of Figure 3(b) can be further supported by the fact that

a row-by-row selection of N GPSFs (Figure 4) is arbitrary. Indeed, any other arbitrary
choice di!erent from a row-by-row selection could be a suitable set of GPSFs for
approximating in the mean to a prescribed function f (�). In this regard, Figure 5 makes it
clear that N�� GPSFs might be extracted from a graph. Therefore, the N GPSFs
row-by-row selected in Figure 3(b) would constitute a particular reduced set.
It will be shown later that from a full set of GPSFs (N��) onlyN

�
(N!1)#1 are linearly

independent. Evidently, it is as a result of this independence that a set of linearly
independent GPSFs is not unique.
What remains now is to show that among N�� GPSFs extractable from a graph of NN

�
local functional components N

�
(N!1)#1 are e!ectively linearly independent. Their

proper selection will follow as a result.
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3.1.1. Independence of GPSFs

Figure 6 provides the basis of the following discussion. Figure 6 constitutes a sub-graph
located on the top-left of a generic graph. This condition has been adopted only in order to
simplify the nomenclature but it does not introduce any limit in the conclusions.
First of all, with respect to Figure 6, it should be noted that the functions ( f

�
, f

�
, f

�
)

constitute three independent functions. The independence of the "rst two ( f
�
, f

�
) is a merit

of the respective polynomials that have an increasing degree (row by row, from the top to
the bottom) and are evidently independent functions. The GPSF f

�
can be shown to be

independent by a discussion ab absurdo: if we suppose that f
�
is a linear combination of

( f
�
, f

�
) it means that f

��
is also a locally linear combination of ( f

��
, f

��
) (Figure 6).

However, due to the correspondences in f
��
, such local dependence can only be established

by admitting that the coe$cient of f
��
is zero. Such a conclusion leads to the admission that

f
�
is coincident with f

�
. Figure 6 shows that this coincidence is not evidently true. An

analogue discussion ab absurdo can be carried out to show that the set of GPSFs
represented with continuous lines in Figure 7 ( f

�
} f

�
) are linearly independent.

Moreover, referring to Figure 7, it can be proved that any path can be obtained by
a linear combination of the set ( f

�
} f

�
). First of all this can be proved by showing that

f
�
(dashed line in Figure 6) can be expressed by a linear combination of ( f

�
, f

�
, f

�
). In this

respect, functions around �
�
in Figure 6 ( f

��
, f

��
, f

��
, f

��
) deserve attention in the following

discussion.
Figure 7. A basic set (*) of linearly independent GPSFs.
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After considering the meaning of the scaling coe$cients previously introduced in
equation (27) and Figure 4, the following equation can be established:

C
�����

C
�����

"C
�����

C
�����

. (29)

From equation (29) and still with respect to the functions around �
�
, the following linear

dependence (30) can be veri"ed:

�
f
��
C

�����
f
��

"aN
� �
f
��
C

�����
f
��

#aN
� �
f
��
C

�����
f
��

#aN
� �
f
��
C

�����
f
��

� 3(�
�
, �

�
)

� 3(�
�
, �

�
)

(30)

whenever the global coe$cients of linear combination (aN
�
, aN

�
, aN

�
) assume the following

values:

(aN
�
, aN

�
, aN

�
)"(C

�����
/C

�����
, 1, !aN

�
). (31)

Moreover, if it is supposed that pairs of branches go into �
�
and go out of �

�
(Figure 6)

then the relative arrangement of coe$cients (31) is still able to preserve a global linear
combination in the range [�

�
, �

�
] whenever the "rst global coe$cient (aN

�
) is recursively

pre-multiplied by the coe$cients preceding �
�
. Namely, the following linear dependence

(32):

�
f
��
C

�����
f
��

C
�����

C
�����

f
��

C
�����

C
�����

C
�����

f
��

"a
� �
f
��
C

�����
f
��

C
�����

C
�����

f
��

C
�����

C
�����

C
�����

f
��

#a
� �
f
��
C

�����
f
��

C
�����

C
�����

f
��

C
�����

C
�����

C
�����

f
��

#a
� �
f
��
, � 3(�

�
, �

�
),

C
�����

f
��
, � 3(�

�
, �

�
),

C
�����

C
�����

f
��
, � 3(�

�
, �

�
),

C
�����

C
�����

C
�����

f
��
, � 3(�

�
, �

�
),

(32)

can easily be veri"ed once the following global coe$cients (33) are taken into account
together with condition (29):

(a
�
, a

�
, a

�
)"�

C
�����
C

�����

aN
�
, 1, !a

�� . (33)

Equation (32) concludes the proof concerning the linear dependence of f
�
with respect to

( f
�
, f

�
, f

�
). However the proof was based on Figure 6 where the GPSFs are assumed to have

pairs of branches going into and going out of the quadrant ( f
��
, f

��
, f

��
, f

��
). The lack of

this assumption for certain possible paths could limit the validity of the previous proof. For
example, the dashed path ( f

�
) of Figure 7 could be a possible candidate for being an

additional independent GPSF with respect to the aforesaid list ( f
�
} f

�
). However, it can be

shown that the con"guration corresponding to Figure 6 is always reproducible so that any
path extraneous to the continuous lines of Figure 7 ( f

�
} f

�
), as for example f

�
, is a linear



Figure 8. Reproduction of a set of linearly dependent GPSFs.
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combination of ( f
�
} f

�
). This can be seen in Figure 8 which reports one part of the paths

shown in Figure 7. In particular, Figure 8(a) introduces a path ( f
�
) that after going out of

f
��
follows f

�
to terminate in f

��
. In this way, a con"guration similar to Figure 6 has been

reproduced for the set ( f
�
, f

�
, f

�
, f

�
) and, therefore, f

�
becomes a linear combination of

( f
�
, f

�
, f

�
). On the other hand, Figure 8(b) reproduces a con"guration similar to Figure 6

for the set ( f
�
, f

�
, f

�
, f

�
) and for this f

�
is a linear combination of ( f

�
, f

�
, f

�
). Therefore, f

�
is

a linear combination of the functions ( f
�
, f

�
, f

�
, f

�
, f

�
). These latter belong to the basic set of

independent GPSFs ( f
�
} f

�
). In conclusion it can be stated that ( f

�
} f

�
) represent a basic set

of independent global piecewise-smooth functions of Figure 7.
An extrapolation of the aforesaid discussion is able to show that Figure 9 corresponds to

a suitable set of N (N!1)#1 linearly independent GPSFs.

�
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Therefore, once N has been "xed at a certain expansion level in a global domain
constituted by N

�
sub-domains, a suitable base of GPSFs is intended as a set of

N
�
(N!1)#1 functions properly selected from a graph. A proper selection should be

intended as assembling a set of linearly independent approximating functions.
Some additional remarks are "nally worth noting. The number of independent functions

is not only dependent on the number of the components in each domain (N) but it linearly
depends also on the number of sub-domains (N

�
) containing the smooth pieces of

a prescribed function f (�). Therefore, an increasing presence of discontinuities
(sub-domains) makes an approximation process automatically more demanding because it
requires, at a local "xed degree of approximation (N), an increasing number of GPSFs.
The local independent functions used here in equation (26) constitute a possibility that is

not believed to be unique. Indeed, the previous discussion dealt with the introduction of an
algorithmic choice of algebraically manipulated known functions, rather than with the
introduction of new and unique approximating functions.

3.1.2. GPSFs: numerical tests

In this section some numerical examples are reported in order to show the e!ectiveness of
the aforesaid GPSFs. The numerical examples show how a global linear combination of
convenient piecewise-smooth functions (illustrated in Figure 9) is able to realize a best
approximation in the mean (equations (23) and (24)) to prescribed functions having di!erent
types of discontinuities. Four di!erent kinds of functions were selected in order to test the
performances of the GPSFs in a best approximation in the mean ((23), (24)). In all cases
three di!erent domains were considered to contain the smooth parts of the prescribed
functions de"ned in [!1/2, 1/2] and ful"lling the boundary conditions given in
equation (25).
The approximating process in all cases is carried out by using the set of GPSFs illustrated

in Figure 10. They correspond to a suitable selection of GPSFs (Figure 9) of SF, FF and FS
bases up to N"3 (26) for a total of seven functional components (N

�
(N!1)#1).

Figure 11(a}d) illustrates the four numerical simulations. They show the related graphics
of prescribed functions f (�) shifted by a constant for a better visual inspection, their best
approximation in the mean f (�)

�
and the di!erence f (�)

�
!f (�) shifted by value 1.
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Figure 11(a) approximates to the mean the function.

f (�)"!8��#2, � 3(!1/2, 1/2). (34)

This "rst case was chosen to test if the GPSFs (Figure 10) were naturally able to perform
a suitable best approximation in the mean also for smooth continuous functions. This could
be expected since a smooth continuous function should be seen as a particular case of
a related function that presents certain discontinuities. Therefore, function (34) should be
naturally accounted for by a generalized concept (GPSFs). The exact correspondence
( f (�)

�
!f (�)"0 for any � in its range) can be explained by the degree of f (�) (34) with

respect to the degree of the approximating polynomials (26).
Figure 11(b, c) displays functions (35) and (36), respectively,

f (�)"�
f (�)

�
"36��!30��!24�, � 3(!1/2,!1/6),

f (�)
�
"f (!1/6)

�
, � 3(!1/6,#1/6),

f (�)
�
"!36��!30��#24�, � 3(#1/6,#1/2),

(35)

f (�)"�
f (�)

�
"36��!30��!24�, � 3(!1/2,!1/6),

f (�)
�
"( f (!1/6)

�
!7) 36��#7, � 3(!1/6,#1/6),

f (�)
�
"!36��!30��#24�, � 3(#1/6,#1/2),

(36)

from which the best approximation in the mean by using the GPSFs of Figure 10 still
provides an exact representation ( f (�)

�
!f (�)"0 for any � in its range) of functions (35)

and (36). Such exactness can still be explained through the polynomial degrees of the used
GPSFs (26) with respect to the maximum local degrees in equations (35, 36).
Finally, Figure 11(d) shows the case corresponding to the equation

f (�)"�
f (�)

�
"36��!30��!24�, � 3(!1/2,!1/6),

f (�)
�
"( f (!1/6)

�
!7) 6���#7, � 3(!1/6,#1/6),

f (�)
�
"!36��!30��#24�, � 3(#1/6,#1/2),

(37)
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In this case the degree of the central polynomial in equation (37) is higher than the
maximum degree considered in the relevant central domain of GPSFs-set ((26), Figure 10).
Therefore, the set of GPSFs at a "xedN"3 is unable to perform an exact representation of
the prescribed function (37) by using equations (23, 24). A widespread error in [!1/2, 1/2]
is evident in Figure 11(d). This error is evidently caused by the global nature of the
approximating process (23, 24).
The examples illustrated have shown the elegant performance of a set of GPSFs. Such set

once realized a priori by simply scaling, delaying and turning over known functions (26),
gives the possibility of approximating a C�-continuous function independently by imposing
explicitly internal continuity conditions. This characteristic would suggest the use,
a posteriori, of a set of GPSFs in the present generalized mixed laminated plate theory.

4. FREELY VIBRATING CROSS-PLY SIMPLY SUPPORTED PLATES:
NUMERICAL RESULTS

In this section the variational analytical model obtained in section 2 is tested in
conjunction with the GPSFs presented in section 3. The numerical tests are performed to
test the convergence of the present analytical model against functions that are in substance
unknown because they are part of the relevant boundary value problem. The boundary
value problem described by equations (20}22) cannot be solved by using closed-form
solutions for any boundary condition, geometry and arrangement of layers involved. To
this end, approximated numerical methods could be used. However, before solving the
obtained boundary value problem by numerical methods, a test concerning its analytical
performance remains to be of primary importance. Therefore, certain freely vibrating
cross-ply plates which have been subjected to a certain class of simply supported constraints
have been adopted because their exact solutions can be extracted from the present model
and can be compared with existing exact results of the three-dimensional theory [24].
In particular, Nosier et al. [24], besides comparing di!erent two-dimensional theories,

published an extensive list of exact results in the frame of the three-dimensional theory.
These results deal with rectangular laminated plates that according to Figure 1 are
subjected to the following boundary conditions:

x"0, ¸
�
: v"w"0; �

�
"0, z3[!h/2, h/2],

y"0, ¸
�
: u"w"0; �

�
"0, z3[!h/2, h/2]. (38)

As far as the present two-dimensional plate model is concerned, the simply supported
edge boundary conditions that correspond to three-dimensional boundary conditions (38)
are as follows:

x"0, ¸
�
: v

	
"w

	
"0, N

�	
"0,

y"0, ¸
�
: u

	
"w

	
"0, N

�	
"0 (39)

and in this context the following displacement "eld:

u(x, y; t)
	
"A�	 cos

m ) � ) x

¸
�

sin
n ) � ) y

¸
�

cos(�
�

t),
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v(x, y; t)
	
"A�	 sin

m ) � )x

¸
�

cos
n ) � ) y

¸
�

cos(�
�

t),

w (x, y; t)
	
"A�	 sin

m ) � ) x

¸
�

sin
n ) � ) y

¸
�

cos(�
�

t) (40)

ful"ls exactly the boundary conditions of equations (39). Hence, once the Navier-type form
of equations (20) have been specialized in accordance with equations (40) the following
generalized eigenvalue problem (41) can be solved to evaluate the relevant exact frequencies
(�

�

):

(K!��
�


M)X"0, (41)

where X"(A��,2, A��, A��,2, A��, A��,2, A��)� and sti!ness and mass matrix assume
for cross-ply arrangements the following expressions:

K"

p�C�
��

#q�C�
��

#C�
��

pq[C�
��

#C�
��
] p[C�

��
!C�

��
]

q�C�
��

#p�C�
��

#C�
��

q[C�
��

!C�
��
]

sym p�C�
��

#q�C�
��

#C�
��

, (42)

M"

��
�

0 0

��
�

0

sym ��
�

with �l

�
"

l1,l1

�
2 l1,lN

�
� �

sym lN,lN

�

and l"1, 2, 3 (43)

having indicated with (p, q) quantities (m�/¸
�
) and (n�/¸

�
) respectively.

The performances of the present model (M3D) can be tested once a suitable base
expanding the kinetic and stress quantities through the thickness of laminate (1, 2) is chosen
a posteriori and introduced into the governing equation of motion (20}22).
The functions (� (z)

�
, � (z)

�
, � (z)

�
) de"ned through the z-co-ordinate (i.e., !1/2)z/h"

�)1/2) should be able to model globally the transverse stresses by equations (2), and also
simultaneously to satisfy the boundary conditions on the top and the bottom of the plate
(�

��
"�

��
"�

�
"0). They have been chosen as GPSFs generated by equations (26), adapted

in the relative sub-domains and assembled by using the scheme of Figure 9. These
orthogonal polynomials, have been extensively used in vibration studies using the Ritz
method (see, for example, references [21, 34}38]) and can be generated by known recursive
equations [35].
The functions (� (z)

��
, �(z)

��
, �(z)

��
) de"ned through the z-co-ordinate (i.e., !1/2)

z/h"�)1/2) should be able to model globally the displacement components by equations
(1). In the case of the displacement components, no boundary condition, apart from the
inherent layer-by-layer continuity, needs to be satis"ed. For this reason, all the local
functional components were chosen to be coincident with FF-bases (equations (26)) adapted
in the relevant sub-domains.
Therefore, once a GPSFs-base is "xed at anN expansion level for a laminated plate made

of N
�
layers, the eigenvalue problem (42) consists of matrices having order

3(N
�
(N!1)#1)�3(N

�
(N!1)#1). Under these considerations and with the usual

convention that indicates through (1, 2, 3) the "bre direction, the transverse in-plane
direction and the normal z direction, respectively, the following numerical tests concerning



TABLE 1

First 10 frequency parameters, �L , for cross-ply square plates; [03/903/03/903]; ¸x/h"10

M3D; N, e% LW4 [32]

Exact [24] 3 e% 4 e% 5 6

(1, 1) 0)06621 0)06621 0)00 0)06621 0)00 0)06621 0)06621 0)06621
0)54596 0)54596 0)00 0)54596 0)00 0)54596 0)54596 0)54596
0)59996 0)59996 0)00 0)59996 0)00 0)59996 0)59996 0)59996
1)2425 1)2428 0)02 1)2425 0)00 1)2425 1)2425 1)2425
1)2988 1)2992 0)03 1)2988 0)00 1)2988 1)2988 1)2987
1)3265 1)3270 0)04 1)3265 0)00 1)3265 1)3265 1)3265
2)3631 2)3653 0)09 2)3630 0)00 2)3631 2)3631 2)3631
2)3789 2)3811 0)09 2)3789 0)00 2)3789 2)3789 2)3789
2)4911 2)4938 0)11 2)4911 0)00 2)4911 2)4911 2)4911
3)6661 3)6732 0)19 3)6695 0)09 3)6661 3)6661 2)6662

(2, 1) 0)15194 0)15195 0)01 0)15194 0)00 0)15194 0)15194 0)15194
0)63875 0)63875 0)00 0)63875 0)00 0)63875 0)63875 0)63875
1)0761 1)0762 0)01 1)0761 0)00 1)0761 1)0761 1)0761
1)2417 1)2420 0)02 1)2417 0)00 1)2417 1)2417 1)2417
1)3425 1)3429 0)03 1)3425 0)00 1)3425 1)3425 1)3425
1)6323 1)6329 0)04 1)6323 0)00 1)6323 1)6323 1)6323
2)3869 2)3892 0)10 2)3869 0)00 2)3869 2)3869 2)3869
2)4844 2)4871 0)11 2)4844 0)00 2)4844 2)4844 2)4844
2)5614 2)5640 0)10 2)5614 0)00 2)5614 2)5614 2)5614
3)6778 3)6861 0)23 3)6808 0)08 3)6778 3)6778 3)6778
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Tables 1}3 were performed on the assumption that the laminated plates investigated are
characterized by the following material properties:

E
�
"25)1�10� psi, E

�
"4)8�10� psi, E

�
"0)75�10� psi,

G
��

"1)36�10� psi, G
��

"1)2�10� psi, G
��

"0)47�10� psi,

�
��

"0)036, �
��

"0)25, �
��

"0)171, (44)

by listing a dimensionless frequency parameter such as in equation (45):

�L "�h�/E
�
. (45)

As far as the numerical tests of Table 4 are concerned, di!erent material properties were
used. They correspond to laminated plates made of transversely isotropic materials with
constants as reported in

E
�
"40E

�
"40E

�
, G

��
"G

��
"0)6E

�
, G

��
"0)5E

�
, �

��
"�

��
"0)25. (46)

The relevant dimensionless frequency parameter of Table 4 corresponds to the following
expression:

�N "�
¸�
�
h

�/E
�
. (47)



TABLE 2

First 10 frequency parameters, �L , for cross-ply square plates; [03/903/03]; ¸x/h"10

M3D; N, e%

(m, n) Exact [24] 3 e% 4 e% 5 e% 6 7

(1, 1) 0)06715 0)06715 0)00 0)06715 0)00 0)06715 0)00 0)06715 0)06715
0)50350 0)50349 0)00 0)50349 0)00 0)50349 0)00 0)50349 0)50349
0)63775 0)63775 0)00 0)63775 0)00 0)63775 0)00 0)63775 0)63775
1)2429 1)2437 0)06 1)2429 0)00 1)2429 0)00 1)2429 1)2429
1)2790 1)2800 0)08 1)2790 0)00 1)2790 0)00 1)2790 1)2790
1)3292 1)3308 0)12 1)3292 0)00 1)3292 0)00 1)3292 1)3292
2)1533 2)1565 0)15 2)1535 0)01 2)1533 0)00 2)1533 2)1533
2)4894 2)4968 0)30 2)4900 0)02 2)4894 0)00 2)4894 2)4894
2)7419 2)7533 0)42 2)7471 0)19 2)7419 0)00 2)7419 2)7419
3)5416 3)6233 2)31 3)5401 !0)04 3)5424 0)02 3)5416 3)5416

(2, 1) 0)17217 0)17220 0)02 0)17217 0)00 0)17217 0)00 0)17217 0)17217
0)58366 0)58366 0)00 0)58366 0)00 0)58366 0)00 0)58366 0)58366
1)1780 1)1783 0)03 1)1780 0)00 1)1780 0)00 1)1780 1)1780
1)2752 1)2758 0)05 1)2752 0)00 1)2752 0)00 1)2752 1)2752
1)3141 1)3151 0)08 1)3141 0)00 1)3141 0)00 1)3141 1)3141
1)7778 1)7815 0)21 1)7778 0)00 1)7778 0)00 1)7778 1)7778
2)1724 2)1755 0)14 2)1725 0)00 2)1724 0)00 2)1724 2)1724
2)4925 2)5000 0)30 2)4931 0)02 2)4925 0)00 2)4925 2)4925
2)8899 2)9011 0)39 2)8958 0)20 2)8899 0)00 2)8899 2)8899
3)5533 3)6347 2)29 3)5518 !0)04 3)5540 0)02 3)5533 3)5533
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Tables 1}3 report a convergence test for the present generalized two-dimensional
laminated plate model when an increasing number of GPSFs is used. All these tables report
the "rst 10 frequency parameters for "xed wave numbers listed in brackets in the "rst
column for each table. The columns corresponding to the present theory (M3D) represent
the frequency parameters until the expansion level of GPSFs obtained a convergence for the
"rst "ve signi"cant digits. Moreover, to the right-hand side of the columns of frequencies,
columns of percentage errors, calculated using both the results of the present model and the
exact three-dimensional results published in reference [24], are reported.
Tables 1}3 clearly show how the performances of the present model are excellent and

stable. Indeed, the present model never failed to get the exact results. Moreover, the
convergence process is shown to be extremely fast. An expansion levelN"4 is indeed able
to get an accuracy in the frequencies that meet many engineering applications. In any case,
the present model seems to o!er the choice of increasing the expansion level (N) until
a su$cient convergence is achieved. In this respect, a perusal of Tables 1}3 shows that, in
particular, it is clear that the convergence process undergoes, though it is not really serious,
a certain dependence on the layout of the layers through the thickness. Indeed, the best
performance of the model was obtained in the case of Table 1 where four layers constituted
the laminate. In this case the full convergence was obtained with N"5. Conversely, the
worst case was obtained for Table 3 where two layers, in an antisymmetric con"guration,
constituted the laminate. In this case the full convergence was obtained with N"7. All the
relevant exact results reported in reference [24, Table 2] were obtained exactly by the
present theory (here reported only in part in Tables 1}3 for the sake of brevity) with
performances similar to Tables 1}3. Therefore, the numerical comparisons stress the
importance to have a model available, depending on the particular case studied, which



TABLE 3

First 10 frequency parameters, �L , for cross-ply square plates; [03/903]; ¸x/h"10

M3D; N, e%

(m, n) Exact [24] 3 e% 4 e% 5 e% 6 e% 7

(1, 1) 0)06027 0)06031 0)07 0)06027 0)00 0)06027 0)00 0)06027 0)00 0)06027
0)52994 0)52994 0)00 0)52994 0)00 0)52994 0)00 0)52994 0)00 0)52994
0)58275 0)58276 0)00 0)58275 0)00 0)58275 0)00 0)58275 0)00 0)58275
1)2367 1)2405 0)31 1)2368 0)01 1)2367 0)00 1)2367 0)00 1)2367
1)2793 1)2840 0)37 1)2794 0)01 1)2793 0)00 1)2793 0)00 1)2793
1)2977 1)3029 0)40 1)2978 0)01 1)2977 0)00 1)2977 0)00 1)2977
2)4730 2)4956 0)91 2)4751 0)08 2)4731 0)00 2)4730 0)00 2)4730
2)5658 2)6222 2)20 2)5728 0)27 2)5664 0)02 2)5658 0)00 2)5658
2)5736 2)6230 1)92 2)5782 0)18 2)5741 0)02 2)5736 0)00 2)5736
3)5811 3)6566 2)11 3)7038 3)43 3)5820 0)03 3)5825 0)04 3)5811

(2, 1) 0)14539 0)14557 0)12 0)14539 0)00 0)14539 0)00 0)14539 0)00 0)14539
0)62352 0)62353 0)00 0)62352 0)00 0)62352 0)00 0)62352 0)00 0)62352
0)95652 0)95659 0)01 0)95652 0)00 0)95652 0)00 0)95652 0)00 0)95652
1)2389 1)2424 0)28 1)2390 0)01 1)2389 0)00 1)2389 0)00 1)2389
1)3189 1)3238 0)37 1)3189 0)00 1)3189 0)00 1)3189 0)00 1)3189
1)6583 1)6668 0)51 1)6584 0)01 1)6584 0)01 1)6583 0)00 1)6583
2)4676 2)4899 0)90 2)4700 0)10 2)4677 0)00 2)4676 0)00 2)4676
2)5843 2)6378 2)07 2)5905 0)24 2)5849 0)02 2)5843 0)00 2)5843
2)7110 2)7702 2)18 2)7192 0)30 2)7118 0)03 2)7110 0)00 2)7110
3)5966 3)6726 2)11 3)7177 3)37 3)5977 0)03 3)5980 0)04 3)5966

TABLE 4

Fundamental frequency parameters, �N , of [03/903] laminated square plates against
length/thickness ratio

M3D LWPT [24]

¸x/h Exact [24] N"3 N"5 N"7 N"12 N"20 N"30
15� 27� 39� 39� 63� 93�

2 4)935 4)948 4)936 4)935 4)957 4)944 4)939
5 8)518 8)560 8)518 8)518 4)541 8)526 8)521
10 10)333 10)356 10)333 10)333 10)344 10)337 10)335
20 11)036 11)043 11)036 11)036 11)039 11)037 10)036
25 11)131 11)136 11)131 11)131 11)134 11)132 11)132
50 11)263 11)265 11)263 11)263 11)264 11)264 11)263
100 11)297 11)298 11)297 11)297 11)298 11)297 11)297

� 6(N!1)#3.
� 3(N#1).
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may be able to improve the accuracy of the results by simply changing a controllable
parameter (N).
Finally, the comparison of the present model (M3D) with respect to the results obtained

by LW4 [32] in Table 1 is interesting. Apart from a possible printing error (2)6662) and
a slight discrepancy (1)2987), the performances concerning LW4 seem to be equivalent for
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the particular case of the M3D-model corresponding to a "xed expansion level of N"5.
This should not come as a surprise because in reference [32] suitable Legendre polynomials
were used up to a comparable expansion level of N"5. Unfortunately, reference [32] did
not apply LW4 beyond four layers and a full comparison (suggested by Tables 1}3) with the
present theory could not be performed. Therefore, the interesting equivalencies between the
present model and the layerwise model presented in reference [32] should be con"ned to the
comparisons analyzed in Table 1. In particular, the correspondences of Table 1 con"rm
what was to be expected by using the GPSFs: without burdening the computational e!ort
the dynamics of freely vibrating multilayered plates can also be considered by modelling the
relevant kinetic and stress quantities in a global sense (by GPSFs) as well as in a local sense
(i.e., expanding quantities for each layer). Such a choice permits the global di!erential
equations of motion to be de"ned directly on the middle plane of the whole laminate (�

��
of

Figure 1) through 3(N
�
N#1!N

�
) displacement degrees of freedom. The a posteriori

choice of GPSFs makes the present theory automatically able to satisfy interlaminar
continuities and external boundary conditions. These characteristics give the present model
similar characteristics to the well-known two-dimensional global models (CPT, FSDT,
HSDT) with the further ability to approach the exact three-dimensional results. Conversely,
LW4 [31, 32] consists of a layerwise theory whose displacement degrees of freedom are
strictly dependent on layer-by-layer quantities. Model LW4 is therefore, implicitly related
to the complexity of the multilayered plate. The more re"ned formulation of the present
model, obtained here as an extension of reference [22], should therefore make the model
more preferable.
Finally, Table 4 reports some numerical comparisons between the present model (M3D)

and a displacement-based layerwise theory (LWPT) [24]. In this respect, two possible
printing errors (4)541, 10)036) should be excluded from the comparisons. Table 4 reports
frequency parameter (48) with respect to square plates having various length/thickness
ratios, from very thick (¸

�
/h"2) to quite thin plates (¸

�
/h"100). In Table 4 again

a convergence test for the present model (M3D) is carried out by increasing the expansion
levelN. It is stressed that, as far as Table 4 is concerned, the parameterN reported for both
the compared models (M3D, LWPT) has a di!erent meaning. However, in both models this
parameter gives the number of unknowns involved in the corresponding equation of the
motion once the number of layers has been established. This number of unknowns is
assessed as shown at the bottom of Table 4 and it is assumed to be characteristic for the
computational e!ort involved.
It can be seen that the present theory (M3D) shows once again an excellent performance.

Indeed, it always gave the exact results. This performance is not greatly in#uenced by the
length/thickness ratio. In particular, the convergence to the exact results is slightly slower
with respect to the thickest plate (¸

�
/h"2), for which N"7 was required to get the full

convergence at the "rst four signi"cant digits. However, besides this exceptional case
(¸

�
/h"2), N"5 was able to provide an excellent performance.
As far as the comparison of the present theory with LWPT [24] is concerned, it is evident

that theM3D is computationally less time consuming. For example, the case corresponding
to N"5 in the M3D theory requires 27 degrees of freedom and lists frequencies whose
accuracy is superior when compared with all cases obtained from the LWPT which, on the
other hand, requires a higher number of degrees of freedom (39, 63, 93). Finally, it should be
noted that the M3D always produced the exact results for the three-dimensional theory but
the LWPT was able to similarly reach this accuracy only for the two thinnest plates
(¸

�
/h"50, 100) by using 93 degrees of freedom.
It is believed that the comparisons between the present theory and those few relevant

theories existing in literature have not only shown the performance of a two-dimensional
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model for vibrational studies of multilayered plates. It was further proved that
a multilayered plate can be treated as if it were virtually made of a single layer. The mixed
nature of the problem (i.e., continuum and discrete aspects coexisting in a multilayered
plate) was considered in a uni"ed manner by means of the GPSFs. In this latter respect, it is
believed that this novel base (GPSFs) could be applied to other scienti"c applications where
continuous and discrete aspects coexist.
Finally, Tables 1}3, should be helpful for testing the performances of future approximate

two-dimensional theories as far as their convergence rate for a "xed computational e!ort
(N) is concerned.

5. CONCLUSIONS

In this study, a previous study [22] that had already generalized two-dimensional higher
order theories has been further extended to eliminate its inherent limitations. Namely, all
the transverse stresses have been taken into account (shear and normal stresses) and both
the transverse stresses and displacement components are modelled as C�-continuous
functions through the whole thickness of the laminated plate.
The present two-dimensional laminate plate theory has been derived by Reissner's mixed

variational theorem [27]. It is based on the expansion of kinetic and stress quantities
through the whole thickness of the multilayered plates by using arbitrary functions. It is
suggested that such an arbitrariness should be controlled by complete bases where each
single functional component satis"es the external boundary conditions for the transverse
stresses and continuity conditions for both transverse stresses and displacement
components.
In order to apply the present theory by using a posteriori arbitrary functions whilst

simultaneously ful"lling boundary conditions and continuity requirements, a proper novel
base has been developed. It is characterized by functions which have discontinuous
derivatives (GPSFs) and are globally de"ned in the domain of interest (the whole thickness
of the plate). Since it is believed the GPSFs might be helpful in other several applications
apart from the present context they have been introduced in the frame of the best
approximation in the mean to a prescribed function. Independence, uniqueness and
numerical e$ciency have also been discussed and tested.
The conjunction of the present two-dimensional laminated plate theory (M3D) with the

novel global piecewise-smooth functions (GPSFs) has been shown to provide the exact
results of the three-dimensional theory for several cases. Previous layerwise theories can be
considered as particular cases of the present model or less accurate compared with the
relevant computational e!ort.
The layerwise character of the present model naturally comes from the GPSFs used

because the number of the functions required automatically increases with the number of
layers involved. However, whenever a high number of layers is involved, a lower expansion
level can be used to control the computational e!ort. It would be interesting to investigate
whether an optimizing numerical process exists to further accelerate the convergence, by
using a reduced number of functional components with respect to the layout involved and
without excessively sacri"cing the accuracy of the results.
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